Formelsammlung

Zusammenfassung der Vorlesung Mathematische Methoden für Naturwissenschaftler

Prof. Dr. Andreas Heuer Dr. Oliver Rubner Stefan F. Hopp

Münster 2008

Literatur

- ZACHMANN, H.G.: Mathematik für Chemiker. VCH 1994 (5. Auflage).
- PAPULA, L.: Mathematik für Ingenieure und Naturwissenschaftler. Band 1-3, vieweg 2001.
- HAINZL, J.: Mathematik für Naturwissenschaftler, Teubner 1985.
- LEHN, J., WEGMANN, H.: Einführung in die Statistik, Teubner 2004.

Zahlen

Zahlenbereiche

Natürliche Zahlen $\mathbb{N}: 1, 2, 3, \dots$ Ganze Zahlen $\mathbb{Z}: ..., -2, -1, 0, 1, 2, \dots$

Rationale Zahlen $\mathbb{Q}: ..., -\frac{1}{2}, ..., -\frac{2}{5}, ..., \frac{3}{2}, ...$ Reelle Zahlen $\mathbb{R}: ..., -\sqrt{2}, ..., \pi, ..., e, ...$

Komplexe Zahlen \mathbb{C} : ..., -2+3i,...,1+2i,... Es gilt: $\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$

Wichtige Kurzschreibweisen

 $\sum_{j=1}^{n} j^2 = 1 + 4 + \dots + n^2$ $\prod_{j=1}^{n} j^2 = 1 \cdot 4 \cdot \dots \cdot n^2$

 $i \in \mathbb{N}$: i ist eine natürliche Zahl |a|: absoluter Betrag einer Zahl a

[a,b]: Intervall mit der Eigenschaft $a \leq c \leq b$ für $c \in \mathbb{R}$

(a,b) =]a,b[: Intervall mit der Eigenschaft a < c < b für $c \in \mathbb{R}$

Rechnen mit komplexen Zahlen

Aufbau einer komplexen Zahl: z=a+bi mit imaginärer Einheit $i=\sqrt{-1}$ (also: $i^2=-1$)

a = Re(z) (Realteil), b = Im(z) (Imaginärteil)

Komplex konjugierte Zahl: $z^* = a - bi$ Betrag: $|a + bi| = \sqrt{z \cdot z^*} = \sqrt{a^2 + b^2}$

Addition: (a + bi) + (c + di) = (a + c) + (b + d)i

Multiplikation: $(a + bi) \cdot (c - di) = ac + bd + (bc - ad)i$

Umformung eines Bruchs: $\frac{z_1}{z_2} = \frac{z_1 z_2^*}{|z_2|^2}$

Kombinatorik

Mathematische Hilfsmittel

 $n\cdot (n-1)\cdots 2\cdot 1\equiv n!$ (n Fakultät) Dabei gilt: 0!=1 und (n+1)!=(n+1)n! Binomialkoeffizient: $\binom{n}{k}\equiv \frac{n!}{(n-k)!\,k!}$

Möglichkeiten der Anordnung von Elementen und deren Berechnung

- Permutationen: Anordnung von n Elementen, Reihenfolge wesentlich: $P_n = n!$
- \bullet Kombinationen: Anordnung von k Elementen aus n Elementen, Reihenfolge unwesentlich
- \bullet Variationen: Anordnung von k Elementen aus n Elementen, Reihenfolge wesentlich

Art der Anordnungen	ohne Wiederholung	mit Wiederholung
Kombinationen	$K_{oW}(n,k) = \begin{pmatrix} n \\ k \end{pmatrix}$	$K_{mW}(n,k) = \begin{pmatrix} n+k-1\\k \end{pmatrix}$
Variationen	$V_{oW}(n,k) = \frac{n!}{(n-k)!}$	$V_{mW}(n,k) = n^k$

Verallgemeinerte Uminterpretation der Kombination ohne Wdh.: n Elemente, die in r Gruppen der Stärke n_i eingeteilt werden, mit $\sum_{i=1}^r n_i = n \Rightarrow \boxed{P_n = \frac{n!}{n_1! \; n_2! \cdots n_r!}}$ $(r = 2 \; \text{für } K_{oW}(n,k))$

Binomischer Lehrsatz: $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$

Unendliche Folgen und Reihen

Unendliche Folgen

Definition: une ndliche Zahlenfolge $\{a_n\}$ mit den Gliedern a_n (n=(0),1,2,3,...) mit $a_n\in\mathbb{R}$ Eigenschaften von Folgen: Beschränktheit ($|a_n| < A$), Monotonie ($a_{n+1} \le a_n$ (monoton fallend) oder $a_{n+1} \ge a_n$ (monoton wachsend)), jew. für alle a_n

Definition des Grenzwerts u einer Folge: $u = \lim_{n \to \infty} a_n$

Monotoniesatz: Eine Folge, die beschränkt und monoton ist, konvergiert (Konvergenzkriterium).

Definition der Eulerschen Zahl e: $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$

Unendliche Reihen

Allgemeines

Bekannte Reihen:

Geometrische Reihe: $\sum_{n=0}^{\infty} x^n$

Harmonische Reihe: $\sum_{n=1}^{\infty} \frac{1}{n}$

Formale Behandlung von Reihen mittels Teilsummen a_i : $a_i = \sum_{n=0}^i u_n$

 \Rightarrow Konvergenz von unendlichen Reihen mittels $\lim_{i\to\infty}a_i=\sum_{n=0}^\infty u_n$ auf Konvergenz von Folgen zurückzuführen

Für die geometrische Reihe ergibt sich $(x \neq 1)$:

$$a_i = \frac{1 - x^{i+1}}{1 - x}$$

Für $\lim_{i\to\infty}$ gilt:

- |x| < 1: Konvergenz gegen $0 \Rightarrow \overline{\lim_{i \to \infty} a_i = \frac{1}{1 x}}$
- $|x| \ge 1$: Divergenz
- \Rightarrow Allgemein: Konvergenz für |x| < rmit Konvergenzradius
r.

Konvergenzkriterien

a. Vergleich mit Integralen

Allgemein: Vergleich einer Reihe $\sum_{n=1}^{\infty}u_n$ mit dem vergleichbaren Integral $\int_{1}^{\infty}dx\,g(x)$

- 1. $\left|\sum_{n=1}^{\infty} u_n\right| < \int_1^{\infty} dx \, g(x) \Rightarrow \text{Integral: Majorante}$ $\int_1^{\infty} dx \, g(x) \text{ konvergient } \Rightarrow \text{Konvergenz von } \sum_{n=1}^{\infty} u_n$
- 2. $\left|\sum_{n=1}^{\infty} u_n\right| > \int_1^{\infty} dx \, g(x) \Rightarrow \text{Integral: Minorante}$ $\int_1^{\infty} dx \, g(x) \text{ divergient } \Rightarrow \text{Divergenz von } \sum_{n=1}^{\infty} u_n$

b. Quotientenkriterium

Allgemein:
$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = k$$

k < 1: Konvergenz; k > 1: Divergenz; k = 1: keine allgemeine Aussage möglich

Funktionen

Allgemeines

Definition: Eine Funktion ist eine Vorschrift, durch die jedem Element einer Menge eindeutig ein Element einer anderen Menge zugeordnet wird.

Wichtige Begriffe: Definitionsbereich \mathbb{D} , Wertebereich \mathbb{W} , Periode a, Symmetrie (gerade, ungerade), Stetigkeit, Umkehrfunktion $(y = f(x) \Rightarrow f^{-1}(f(x)) = x, \text{ d.h. } f^{-1}(y) = x)$

Algebraische Funktionen, quadratische Gleichung

Allgemeine Formulierung: Polynom vom Grade n: $y = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$

 \Rightarrow algebraische Gleichung durch Nullsetzen dieses Ausdrucks (\rightarrow Bestimmung von Nullstellen)

Produktdarstellung: $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = a_n (x - \alpha_1) \cdot (x - \alpha_2) \cdot \dots \cdot (x - \alpha_n)$

 \Rightarrow Hauptsatz der Algebra: Jedes Polynom n-ten Grades hat bei Nullsetzen n Lösungen α_i , wenn man komplexwertige Lösungen mitrechnet und eventuell mehrfache Lösungen einzeln zählt.

4

Bestimmung sämtlicher Nullstellen mittels Polynomdivision

Spezialfall: Quadratische Gleichung $y = ax^2 + bx + c$

 \rightarrow Scheitelpunktsform: $y=a(x-d)^2+e$ mit Scheitelpunkt $S\left(d|e\right)$

Wichtig: Nullstellen von $y = x^2 + px + q$: $\alpha_{1,2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$

Gebrochen rationale Funktion

Allgemein: Quotient zweier algebraischer Funktionen

Charakterisierungsmerkmale: Nullstellen (Zähler = 0), Pole (Nenner = 0), Symmetrie, Verhalten für $x \to \pm \infty$

Polynomdivision

Beispiel:
$$(x^3 - 4x^2 + 4x)$$
: $(x^2 - 1) = x - 4 + \frac{5x - 4}{x^2 - 1}$

Partialbruchzerlegung

Bedingung: Grad der Zählerfunktion kleiner als Grad der Nennerfunktion, $\alpha_1 \neq \alpha_2$

Darstellung:
$$f(x) = \frac{ax+b}{(x-\alpha_1)(x-\alpha_2)} = \frac{A_1}{x-\alpha_1} + \frac{A_2}{x-\alpha_2} = \frac{A_1(x-\alpha_2) + A_2(x-\alpha_1)}{(x-\alpha_1)(x-\alpha_2)}$$

Exponentialfunktion

Allgemeiner Ausdruck: $y = a^x$

Wichtige Spezialfälle: $y = 10^x$ und $y = e^x \equiv \exp(x)$

Potenz-Rechenregeln:

$$a^{m} \cdot a^{n} = a^{m+n}$$

$$a^{m} : a^{n} = a^{m-n}$$

$$a^{n} \cdot b^{n} = (ab)^{n}$$

$$a^{n} : b^{n} = \left(\frac{a}{b}\right)^{n}$$

$$(a^{m})^{n} = a^{mn}$$

$$(a^{m})^{n} = a^{mn}$$

Wichtige Anwendungen:

• Radioaktiver Zerfall: $y(t) = y_0 e^{-kt}$

• Gaußverteilung: $g_{\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-x^2/2\sigma^2}$

• " δ -Funktion ": Grenzfall $\sigma \to 0$ bezogen auf normierte Gaußfunktion Eigenschaften: Fläche = 1; $\delta(0) = \infty$; $\int_{-\infty}^{\infty} dx f(x) \delta(x - x_0) = f(x_0)$

Logarithmusfunktion

$$x = a^y \Rightarrow y = {}^a \log x$$
 (Umkehrfunktion)

Wichtige Spezialfälle: $y = {}^{10}\log x = \lg x$ (dekad. Log.) und $y = {}^e\log x = \ln x$ (natürl. Log.)

Logarithmus-Rechenregeln (hier für ln):

$$\ln\left(u\cdot v\right) = \ln u + \ln v \qquad \qquad \ln\left(\frac{u}{v}\right) = \ln u - \ln v \qquad \qquad \ln u^b = b\cdot \ln u$$

Trigonometrische Funktionen

Zentrale Funktionen: $\sin(x)$, $\cos(x)$, $\tan(x) = \frac{\sin x}{\cos x}$, $\cot(x) = \frac{\cos x}{\sin x}$

Definition über Einheitskreis, Angabe von x in Bogenmaß mit $x=\frac{\pi}{180^{\circ}}\,\varphi$

⇒ Periodizität der Funktionen

Symmetrie: $\sin(-x) = -\sin(x)$ und $\cos(-x) = \cos(x)$

Wichtige Relationen:

$$\cos(x) = \sin(\pi/2 - x)$$
 $\cos^2(x) + \sin^2(x) = 1$

Spezielle Werte:

$x(\varphi)$	$\sin x$	$\cos x$	$\tan x$
0	$0 = \frac{\sqrt{0}}{2}$	$1 = \frac{\sqrt{4}}{2}$	0
$\frac{\pi}{6}$ (30°)	$\frac{1}{2} = \frac{\sqrt{1}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$
$\frac{\pi}{4}$ (45°)	$\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$	$\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3}$ (60°)	$\frac{\sqrt{3}}{2}$	$\frac{1}{2} = \frac{\sqrt{1}}{2}$	$\sqrt{3}$
$\frac{\pi}{2} \left(90^{\circ}\right)$	$1 = \frac{\sqrt{4}}{2}$	$0 = \frac{\sqrt{0}}{2}$	$\rightarrow \pm \infty$

Additions theoreme:

- $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y \rightarrow \cos 2u = \cos^2 u \sin^2 u$
- $\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y \rightarrow \sin 2u = 2\sin u \cos u$

Daraus folgt:

$$\cos^2 u = \frac{1}{2}(1 + \cos 2u) \qquad \qquad \sin(u + v) - \sin u = 2\cos(u + \frac{v}{2})\sin(\frac{v}{2})$$

6

Wichtige Näherung: $\sin x \approx x$ für kleine x

Abgeleitete Funktionen:

- Inverse Funktionen: $\sin \rightarrow \arcsin$ etc.
- Hyperbelfunktionen: $\sinh x = \frac{e^x e^{-x}}{2}$ und $\cosh x = \frac{e^x + e^{-x}}{2}$

Differentialrechnung

Das Differential

Definition:
$$f'(x_0) = y'(x_0) \equiv \lim_{h\to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Falls diese Ableitung für jeden Wert von x_0 existiert, so nennt man die Funktion differenzierbar.

Es gilt: Differenzierbarkeit ⇒ Stetigkeit (Umkehrung gilt nicht)

Differentiation spezieller Funktionen

$$y = c \Rightarrow y' = 0$$
 $y = x^n \ (n \in R) \Rightarrow y' = nx^{n-1}$ $y = \ln x \Rightarrow y' = \frac{1}{x}$
 $y = \sin x \Rightarrow y' = \cos x$ $y = \cos x \Rightarrow y' = -\sin x$

Allgemeine Regeln für das Differenzieren

- Summerregel: $y = u + v \Rightarrow y' = u' + v'$
- Produktregel: $y=u\,v \Rightarrow y'=u'\,v+u\,v'$ (Spezialfall: $y=c\,u$ (c = const) $\Rightarrow y'=c\,u'$)
- Quotientenregel: $y = u/v \Rightarrow y' = \frac{u'v uv'}{v^2}$
- Zusammengesetzte Funktion: $y=f(\varphi(x))\Rightarrow y'=f'(\varphi(x))\,\varphi'(x)$ Merkregel: Innere Ableitung mal äußere Ableitung
- Umkehrfunktion von x = f(y): $y = \varphi(x) \Rightarrow \varphi'(x) = \frac{1}{f'(y)} = \frac{1}{f'(\varphi(x))}$

Mehrfache Ableitung möglich: $f^{(n)}(x) = \frac{d^n}{dx^n} f(x)$ (n-te Ableitung von f)

Monotonie- und Krümmungsverhalten

Monotonieverhalten

	f'(x) < 0	f'(x) > 0	$f'(x) \le 0 \text{ oder } f'(x) \ge 0$
Verhalten	streng monoton fallend	streng monoton wachsend	monoton fallend/wachsend

Krümmungsverhalten

	f''(x) < 0	f''(x) > 0	
Verhalten Rechtskrümmung (konkav)		Linkskrümmung (konvex)	

Bestimmung von Extrema und Wendepunkten

Extrema

	f''(x) < 0	f''(x) > 0	f''(x) = 0
f'(x) = 0	Maximum	Minimum	keine Aussage möglich*

^{*}Verhalten hängt von höheren Ableitungen ab

Wendepunkte

	$f'''(x) \neq 0$	f'''(x) = 0	$f'''(x) \neq 0 \land f'(x) = 0$
f''(x) = 0	Wendepunkt	keine Aussage möglich*	Sattelpunkt

^{*}Verhalten hängt von höheren Ableitungen ab

Kurvendiskussion

Wichtige zu bestimmende Parameter:

Definitions- und Wertebereich Verhalten für $x \to \pm \infty$ Polstellen $(f(x)_{x\to x_0} = \pm \infty)$ Symmetrie (gerade/ungerade) Nullstellen (f(x) = 0) Extrema/Wendepunkte

Entwicklung von Funktionen

Lineare Entwicklung

Darstellung einer Funktion in der Nähe von $x_0 = 0$ durch Gerade:

$$f(x) \approx \tilde{f}_1(x) = f(x_0) + f'(x_0)(x - x_0)$$
 (vgl. Tangentengleichung)

$$\Rightarrow \Delta f = f(x) - f(x_0) \approx f'(x_0)(x - x_0) = f'(x_0)\Delta x$$

Wichtige Beispiele $(x_0 = 0, |\delta| << 1)$:

Satz von L'Hospital

Anwendbar für Funktionen $f(x) = \frac{g(x)}{h(x)}$, für die an der Stelle x_0 gilt: $g(x_0) = h(x_0) = 0$

$$\Rightarrow \lim_{x \to x_0} \frac{g(x)}{h(x)} = \frac{g'(x_0)}{h'(x_0)}$$

Taylor-Reihe

Prinzip: Erweiterung der linearen Entwicklung durch Terme höherer Potenzen

$$\Rightarrow \tilde{f}_N(x) = \sum_{k=0}^{N} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

$$\tilde{f}(x) = \lim_{N \to \infty} \tilde{f}_N(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Unter allgemeinen Bedingungen gilt: $\tilde{f}(x) = f(x)$ für |x| < r (r: Konvergenzradius von $\tilde{f}(x)$)

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \qquad \ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \dots$$

$$\Rightarrow e = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots = \sum_{n=0}^{\infty} \frac{1}{n!} \qquad \Rightarrow \text{Nur für } |x| < 1 \text{ konvergent}$$

$$\sin(x) = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} \qquad \cos(x) = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \dots = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2n)!}$$

Euler-Formel

Wichtige Beispiele:

Mittels der Taylor-Reihe erhält man: $e^{ix} = \cos x + i \sin x$ Analog: $e^{-ix} = \cos x - i \sin x$ Daraus resultierende Beziehungen:

$$e^{i\pi} = -1$$

$$\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$$

$$|e^{ix}| = \sqrt{\cos^2 x + \sin^2 x} = 1$$

$$e^{i(x+y)} = e^{ix}e^{iy} \text{ (Potenzgesetz)}$$

$$\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$$

 $\Rightarrow e^{ix}$ liegt auf Einheitskreis mit Bogenmaß x.

Analog: Darstellung von re^{ix} in der komplexen Ebene

Partielle Ableitungen

Ausgangspunkt: Funktionen mehrerer Variablen $f(x_1,...,x_n)$

Prinzip: Nach einer Variable ableiten, alle anderen konstant halten

Partielle Ableitung von f nach x (nach y analog): $\partial_x f \equiv \left(\frac{\partial f}{\partial x}\right)_y$

Satz von Schwarz: $\partial_y \partial_x f = \frac{\partial^2 f}{\partial y \partial x} \stackrel{!}{=} \frac{\partial^2 f}{\partial x \partial y} = \partial_x \partial_y f$

Entwicklung einer Funktion in höheren Dimensionen

Beschreibung von f(x, y) am Ort (x_0, y_0) durch Tangentialebene:

$$f(x,y) \approx f(x_0, y_0) + \partial_x f(x_0, y_0)(x - x_0) + \partial_y f(x_0, y_0)(y - y_0)$$

$$\Rightarrow \Delta f \approx \partial_x f(x_0, y_0) \Delta x + \partial_y f(x_0, y_0) \Delta y$$

Kurzschreibweise für $x \to x_0$ und $y \to y_0$: $df = \partial_x f dx + \partial_y f dy$

Lineare Regression

Ausgangspunkt: N Messwerte (x_i, y_i) mit funktionalem Zusammenhang y = ax + b

 \Rightarrow Bestimmung von a und b durch Minimierung von $\sum_i (y_i - y(x_i, a, b, ...))^2$

Man erhält: $a = \frac{\sum_{i} x_{i} y_{i} - N \bar{x} \bar{y}}{\sum_{i} x_{i}^{2} - N \bar{x}^{2}}$ und $b = \bar{y} - a\bar{x}$, wobei $\bar{x} = \frac{\sum x_{i}}{N}$ (analog \bar{y})

Vektoren und Vektoranalysis

Definition von Vektoren

Vektor: gekennzeichnet durch eine Richtung und eine Länge (im Gegensatz zum Skalar)

⇒ je nach Dimension Charakterisierung durch zwei bzw. drei kartesische Koordinaten

Betrag
$$a: a = \sqrt{a_x^2 + a_y^2 + a_z^2}$$

Alternativ: Charakterisierung durch Betrag a und durch Winkel (ein Winkel φ in 2D und zwei Winkel ϑ, φ in 3D)

- \Rightarrow Umrechnungsformeln:
 - Polarkoordinaten (2D): $a_x = a \cos \varphi, a_y = a \sin \varphi$
 - Kugelkoordinaten (3D): $a_x = a \sin \theta \cos \varphi$, $a_y = a \sin \theta \sin \varphi$, $a_z = a \cos \theta$

Rechenregeln

Addition

 $\vec{a} + \vec{b} = \vec{c}$ mit $a_x + b_x = c_x$ etc. (Subtraktion analog)

Multiplikation mit Skalar

$$m \cdot \vec{a} = \vec{c}$$
 mit $m \cdot a_x = c_x$ etc.

Einheitsvektoren

Allgemeine Definition: Vektoren der Länge 1 \Rightarrow \vec{a} auf Länge 1 normieren: $\hat{a} = \vec{a}/a$

Wichtig: Einheitsvektoren in Richtung der Koordinatenachsen $\vec{e}_x, \vec{e}_y, \vec{e}_z$

 \Rightarrow alle Vektoren darstellbar über diese Einheitsvektoren: $\vec{a} = a_x \vec{e}_x + a_y \vec{e}_y + a_z \vec{e}_z$.

Multiplikation zweier Vektoren

Skalares Produkt

Allgemeine Definition: $\vec{a} \cdot \vec{b} = ab \cos \varphi$ mit dem von \vec{a} und \vec{b} eingeschlossenen Winkel φ Mit $\vec{e_i} \cdot \vec{e_j} = \delta_{ij}$ erhält man: $\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$

Vektorielles Produkt

$$\vec{c} = \vec{a} \times \vec{b} = \begin{pmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{pmatrix}$$

Eigenschaft: \vec{c} steht senkrecht auf \vec{a} und $\vec{b} \Rightarrow 3$ -Finger-Regel der rechten Hand

Betrag von \vec{c} : $c=a\,b\,\sin\varphi$ mit dem von \vec{a} und \vec{b} eingeschlossenen Winkel φ

Interpretation des Betrages: Fläche des durch \vec{a} und \vec{b} aufgespannten Parallelogramms

Skalarfelder und Vektorfelder

Definition eines Feldes: Jedem Punkt im Raum (oder in der Fläche) wird ein Skalar oder ein Vektor zugeordnet.

Einführung des Gradienten:

$$\operatorname{grad} u(x, y, z) = \begin{pmatrix} \partial_x u(x, y, z) \\ \partial_y u(x, y, z) \\ \partial_z u(x, y, z) \end{pmatrix}$$

⇒ Aus einem Skalarfeld entsteht ein (konservatives) Vektorfeld.

Interpretation von grad u(x, y, z): grad u(x, y, z) steht senkrecht auf den Höhenlinien und zeigt in Richtung der größten Steigung.

 $|\mathrm{grad}\, u(x,y,z)|$: Änderung von u(x,y,z)entlang der Richtung des Gradienten.

Wichtiges Beispiel: Potential U(x,y,z), Kraftfeld $\vec{F}(x,y,z) \Rightarrow \vec{F} = -\text{grad}\,U$

Andere Schreibweise mit Nabla-Operator: $\nabla = \begin{pmatrix} \partial_x \\ \partial_y \\ \partial_z \end{pmatrix} \Rightarrow \operatorname{grad} U = \nabla U$

Divergenz

Definition der Divergenz: div $\vec{a} = \nabla \vec{a} = \partial_x a_x + \partial_y a_y + \partial_z a_z$

Betrachte Teilchenstrom $\vec{j}(x,y)$ in 2D-Box mit Fläche ΔA und Fluss $F=-{\rm div}\,\vec{j}(x,y,t)\Delta A$

 \Rightarrow Kontinuitätsgleichung in 2D: $\partial_t c(x,y,t) = F/\Delta A = -{\rm div}\, \vec{j}(x,y,t)$

Interpretation: Vorliegen von Quellen (div $\vec{a}>0$) oder Senken (div $\vec{a}<0$) in einem Vektorfeld

Wichtige Anwendung in der Elektrodynamik: Maxwell-Beziehungen

- div $\vec{B}(\vec{r}) = 0 \Rightarrow$ keine magnetischen Monopole (\vec{B} : magn. Feld)
- div $\vec{E}(\vec{r}) = \rho(\vec{r})/\epsilon_0 \Rightarrow$ Ladung als Quelle des elektr. Feldes (\vec{E} : elektr. Feld, ϵ_0 : Permittivität)

Weitere wichtige Beziehung: $\vec{E} = -\text{grad}\,U \Rightarrow \text{div}\,\text{grad}\,U = -\rho(\vec{r})/\epsilon_0$

Einführung des Laplace-Operators: $\triangle = \nabla^2 = \partial_x^2 + \partial_y^2 + \partial_z^2 \implies \operatorname{div}\operatorname{grad} U = \triangle U$

Außerdem gilt:

$$2D (\vec{r} = (x, y)^T, r = \sqrt{x^2 + y^2})$$

$$3D (\vec{r} = (x, y, z)^T, r = \sqrt{x^2 + y^2 + z^2})$$

$$grad g(r) = g'(r) \left(\frac{\partial r}{\partial x}, \frac{\partial r}{\partial y}\right)^T = \frac{\vec{r}}{r}g'(r)$$

$$grad g(r) = g'(r) \left(\frac{\partial r}{\partial x}, \frac{\partial r}{\partial y}, \frac{\partial r}{\partial z}\right)^T = \frac{\vec{r}}{r}g'(r)$$

$$\Delta g(r) = \frac{g'(r)}{r} + g''(r) = \frac{1}{r}\frac{\partial}{\partial r}(rg'(r))$$

$$\Delta g(r) = 2\frac{g'(r)}{r} + g''(r) = \frac{1}{r^2}\frac{\partial}{\partial r}(r^2g'(r))$$

Rotation

Definition der Rotation:

$$\operatorname{rot} \vec{a} = \begin{pmatrix} \partial a_z / \partial y - \partial a_y / \partial z \\ \partial a_x / \partial z - \partial a_z / \partial x \\ \partial a_y / \partial x - \partial a_x / \partial y \end{pmatrix}$$

Alternative Schreibweise: rot $\vec{a} = \nabla \times \vec{a}$.

Interpretation: rot \vec{a} ist Maß für lokale Wirbelstärke

Anwendung: Maxwell-Beziehungen

- rot $\vec{B} \propto \vec{j}$ (\vec{j} : elektr. Strom)
- $\bullet \ \operatorname{rot} \vec{E} = 0 \Rightarrow$ keine Wirbelströme

Integralrechnung

Bestimmtes Integral

Ziel: Berechnung der Fläche $\varphi(a,b)$ zwischen Kurve einer Funktion y=f(x) und x-Achse im Intervall [a,b].

Definition des bestimmten Integrals: $\varphi(a,b) \equiv \int_a^b dx f(x)$

 \Rightarrow Negativer Flächenbeitrag, falls f(x) < 0

Wichtige Relationen:

$$\int_a^b dx f(x) = \int_a^c dx f(x) + \int_c^b dx f(x)$$

$$\int_b^a dx f(x) = -\int_a^b dx f(x)$$

Stammfunktion

Funktion F(x) ist Stammfunktion der Funktion f(x), wenn gilt $F'(x) = f(x) \Rightarrow$ Umkehrung des Differentiationsprozesses

Wichtig: Ist F(x) eine Stammfunktion, so ist auch die Funktion F(x) + C mit einer beliebigen Konstanten C eine Stammfunktion.

$$\Rightarrow$$
 Unbestimmtes Integral: $\int dx f(x) = F(x) + C$

Elementare Stammfunktionen:

$$\int dx \, x^n = \frac{x^{n+1}}{n+1} + C \, (n \neq -1) \qquad \int dx \, e^{kx} = \frac{1}{k} e^{kx} + C \qquad \qquad \int dx \, \frac{1}{kx} = \frac{1}{k} \ln|x| + C \, (x \neq 0)$$

$$\int dx \, \sin kx = -\frac{1}{k} \cos kx + C \qquad \int dx \, \cos kx = \frac{1}{k} \sin kx + C$$

Berechnung des bestimmten Integrals mittels Stammfunktion

Hauptsatz der Differential- und Integralrechnung: $\int_a^b du \, f(u) = F(b) - F(a) = F(x)|_a^b$

Spezialfall: Grenzen $\pm \infty \Rightarrow uneigentliches Integral$, falls Grenzwert existiert

$$\rightarrow$$
 Wichtiges uneigentliches Integral: $\int_{-\infty}^{\infty} dx \; e^{-Ax^2} = \sqrt{\frac{\pi}{A}}$

Vereinfachung von Integralen mit Hilfe von Symmetrieargumenten

$$f(x)$$
 ungerade $\Rightarrow \int_{-a}^{a} dx f(x) = 0$ $f(x)$ gerade $\Rightarrow \int_{-a}^{a} dx f(x) = 2 \int_{0}^{a} dx f(x)$

Integrationsverfahren

Summen- und Produktregel

$$\int dx \left(f(x) + g(x) \right) = F(x) + G(x) \qquad \qquad \int dx \, af(x) = a \, F(x)$$

Partialbruchzerlegung

Anwendbar bei Integralen von gebrochen rationalen Funktionen (s.o.)

$$\int dx \, \frac{ax+b}{(x-\alpha_1)(x-\alpha_2)} = \int dx \, \frac{A_1}{x-\alpha_1} + \int dx \, \frac{A_2}{x-\alpha_2} = A_1 \, \ln|x-\alpha_1| + A_2 \, \ln|x-\alpha_2|$$

Partielle Integration

$$\int_{a}^{b} dx \, u(x) \, v'(x) = u(x) \, v(x)|_{a}^{b} - \int_{a}^{b} dx \, u'(x) \, v(x)$$

Substitution

Substitution:
$$u = g(x) \Rightarrow \frac{du}{dx} = g'(x) \Rightarrow du = g'(x)dx = g'(g^{-1}(u))dx \Leftrightarrow dx = \frac{du}{g'(g^{-1}(u))}$$

Grenzen ersetzen: $a \to g(a)$ und $b \to g(b)$

Gut anwendbar bei Integralen des Typs $\int_a^b dx \, f(g(x)) g'(x)$

$$\Rightarrow \int_a^b dx \, f(g(x))g'(x) = \int_{g(a)}^{g(b)} du \, f(u) = F(u)|_{g(a)}^{g(b)}$$

Abbildung von Integralen auf Summen und umgekehrt

Sehnentrapezregel:
$$\int_a^b dx f(x) \approx \int_a^b dx \tilde{f}(x) = h \sum_{k=0}^N f(x_k) - \frac{1}{2} h [f(x_0) + f(x_N)]$$
 mit $h = (b - a)/N$; $x_0 = a, x_N = b$.

Umformung ergibt Ausdruck zur Berechnung von Summen mittels Integralen:

$$\sum_{k=0}^{n} f(x_k) = \frac{1}{h} \int_a^b dx \, f(x) + \frac{1}{2} [f(x_0) + f(x_N)]$$

Anwendung: Approximation der Fakultät (Stirlingsche Formel)

$$\Rightarrow \ln N! \approx N(\ln N - 1) + \frac{1}{2} \ln N + \frac{1}{2} \ln(2\pi)$$

2D-Bereichsintegrale

Definition: $\int_B dA H(x, y)$

Interpretation: Volumen zwischen dem Bereich B auf der xy-Ebene und der Fläche z = H(x, y)

Berechnung durch sukzessive Ausführung von zwei 1D-Integralen

$$\Rightarrow \int_B dA \ H(x,y) = \int_a^b dx \int_{\Psi_1(x)}^{\Psi_2(x)} dy \ H(x,y)$$

Variablentransformation in höheren Dimensionen

Problem bei 2D-Bereichsintegralen: x-abhängige Grenzen bei Integration nach y

Vereinfachende Transformation in Polarkoordinaten möglich, wenn B Kreis (Radius a):

$$x \in [-a,a], y \in [-\sqrt{a^2-x^2},\sqrt{a^2-x^2}] \rightarrow r \in [0,a], \varphi \in [0,2\pi] \text{ mit } dx\,dy = r\,dr\,d\varphi$$

Integration: $V = \int_{-a}^{a} dx \int_{-\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}} dy \ H(x,y) = \int_{0}^{2\pi} d\varphi \int_{0}^{a} r dr H^*(\varphi,r) \ (=\pi a^2 H, \text{ falls } H \text{ konstant})$

Transformation in Kugelkoordinaten: $dx dy dz = r^2 \sin \vartheta dr d\varphi d\vartheta$

Rotationskörper

Bedingung: H(x, y) = f(r)

 \Rightarrow Volumen des entstehenden Rotationskörpers: $V=\int_{B}dA\,f(r)=2\pi\int_{0}^{a}dr\,rf(r)$

Anwendung: Berechnung von $\int_{-\infty}^{\infty} dx \exp(-x^2/2)$

Es gilt:
$$\int_B dA \exp(-r^2/2) = 2\pi$$
, $r^2 = x^2 + y^2$ und $\int_B dA \exp(-r^2/2) = \left[\int_{-\infty}^{\infty} dx \exp(-x^2/2)\right]^2$
 $\Rightarrow \int_{-\infty}^{\infty} dx \exp(-x^2/2) = \sqrt{2\pi}$

Differentiale

Das vollständige Differential

df = g(x, y) dx + h(x, y) dy ist vollständiges Diffential, wenn gilt:

$$\partial_u g(x,y) = \partial_u \partial_x f(x,y) = \partial_x \partial_u f(x,y) = \partial_x h(x,y)$$

Dann gilt außerdem: $\partial_x f(x,y) = g(x,y)$ und $\partial_y f(x,y) = h(x,y)$

Interpretation: Bewegung auf der Tangentialebene einer unterliegenden Funktion f(x,y) (Zustands- oder Potentialfunktion)

Anwendung in der PC:

U(T,V) ist Zustandsfunktion, $dU = \delta Q + \delta A$ ist kein vollständiges Differential

 $\Rightarrow Q(T,V)$ ist keine Zustandsgröße

 $(\delta Q)/T$ bildet jedoch vollständiges Differential dS

 $\Rightarrow S(T,V)$ beschreibt Entropie des Systems und ist eindeutige Zustandsfunktion

Wegintegration

Allgemein: Kurvenintegral über ein vollständiges Differential hängt nur vom Anfangs- und Endpunkt der Kurve, nicht aber vom Integrationsweg ab.

 \Rightarrow Integration über geschlossene Kurve ergibt den Wert 0.

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen erster Ordnung

Allgemein: y' = f(x, y): Gewöhnliche DGL 1. Ordnung

Im Folgenden Betrachtung des spezielleren Falles y' = -f(x)h(y) + g(x) mit der Unterscheidung g(x) = 0: homogene DGL $g(x) \neq 0$: inhomogene DGL

Lösung der homogenen DGL

Vorgehensweise am Beispiel $y' = -f(x) y^2$ (allg.: $h(y) \neq 0$)

- Trennung der Variablen: $\frac{dy}{y^2} = -f(x) dx$
- Aufintegration: $\int \frac{dy}{y^2} = -\int dx \, f(x) \Rightarrow y = \frac{1}{F(x) C}$

• Anfangsbedingung:
$$y(0) = \frac{1}{F(0) - C} \Rightarrow C$$

Lösung der linearen inhomogenen DGL

Allgemeine Form: $\Rightarrow y' + f(x)y = g(x)$ (also: h(y) = y und $g(x) \neq 0$)

Lösungsschema: 1.) Bestimmung der Lösung der homogenen DGL $y_{hom}({\cal C},x)$

2.) Variation der Konstanten $C \Rightarrow y(x) = y_{hom}(C = u(x), x)$

Gewöhnliche DGL mit konstanten Koeffizienten

Betrachte:
$$a_2 \frac{d^2 y(t)}{dt^2} + a_1 \frac{dy(t)}{dt} + a_0 y(t) = f(t)$$

Lösung mittels Exponentialansatz (hom. Fall)

• 1. Ordnung: y' - ky = 0Exponentialansatz: $y(t) = b e^{\alpha t} \Rightarrow \alpha = k$

• 2. Ordnung: $a_2 \frac{d^2 y(t)}{dt^2} + a_1 \frac{dy(t)}{dt} + a_0 y(t) = 0$

Mit obigem Exponentialansatz: $a_2\alpha^2 + a_1\alpha + a_0 = 0 \Rightarrow 2$ Lösungen $\alpha_{1,2}$

$$\Rightarrow y_1(t) = b_1 \, e^{\alpha_1 t}$$
 und $y_2 = b_2 \, e^{\alpha_2 t}$ mit $\alpha_1 \neq \alpha_2$

$$\Rightarrow$$
 Allgemeinste Lösung: $y(t) = b_1 e^{\alpha_1 t} + b_2 e^{\alpha_2 t}$

Beachte: Zur Bestimmung von b_1 und b_2 zwei Anfangsbedingungen notwendig!

Wichtige Anwendung: Gedämpfte Schwingung in einem harmonischen Potential $\frac{1}{2}Dy^2$:

$$m\frac{d^2y}{dt^2} = F = -Dy - \rho\frac{dy}{dt} + f(t)$$
 (Rückstell-, Reibungs- und äußere Kraft)

Homogene Schwingungsgleichung

$$\frac{d^2y}{dt^2} + \frac{\rho}{m}\frac{dy}{dt} + \frac{D}{m}y = 0 \ (f(t) = 0)$$

Exponential
ansatz ergibt:
$$\Rightarrow \alpha_{1,2} = -\frac{\rho}{2m} \pm \sqrt{\frac{\rho^2}{4m^2} - \frac{D}{m}}$$

$$\Rightarrow y(t) = b_1 e^{\alpha_1 t} + b_2 e^{\alpha_2 t}$$
 mit den zwei Anfangsbedingungen $y(0), \frac{dy(0)}{dt} = v(0)$

• Fall I:
$$\rho = 0$$
, Definition: $\omega = \sqrt{\frac{D}{m}} \Rightarrow y(t) = y(0)\cos(\omega t) + \left(\frac{v(0)}{\omega}\right)\sin(\omega t)$

• Fall II:
$$\rho \neq 0$$
, Definitionen: $\omega_{\rho} = \sqrt{\left|\frac{\rho^2}{4m^2} - \frac{D}{m}\right|}, k = \frac{\rho}{2m}$

Fallunterscheidung:

$$\begin{array}{c|c} \rho^2/4m^2 < D/m & \rho^2/4m^2 > D/m \\ \\ \text{komplexes } \alpha, \text{ also } \alpha_{1,2} = -k \pm i\omega_{\rho} & \text{reelles } \alpha, \text{ also } \alpha_{1,2} = -k \pm \omega_{\rho} \\ \\ y(t) = e^{-kt}(b_1 \, e^{i\omega_{\rho}t} + b_2 \, e^{-i\omega_{\rho}t}) & y(t) = e^{-kt}(b_1 \, e^{\omega_{\rho}t} + b_2 \, e^{-\omega_{\rho}t}) \\ \\ \text{Schwingfall (Pendel in Luft)} & \text{Kriechfall (Pendel in Honig)} \end{array}$$

Inhomogene Schwingungsgleichung

$$m\frac{d^2y}{dt^2} + \rho\frac{dy}{dt} + Dy = f(t) \text{ mit } f(t) = K_0\cos(\omega_k t)$$

Lösung: $y(t) = \frac{K_0}{r}\cos(\omega_k t - \Psi)$ (allein relevant für lange Zeiten (nach Einschwingzeit)),

wobei
$$r = \sqrt{m^2(\omega^2 - \omega_k^2)^2 + \rho^2 \omega_k^2}$$
 und $\tan \Psi = \frac{\rho \omega_k}{m(\omega^2 - \omega_k^2)}$

Es gilt: $\rho=0 \Rightarrow r \to 0, \Psi=\pi/2 \Rightarrow$ Resonanzkatastrophe für $\omega_k=\omega.$

Fouriertransformation

Fourierdarstellung periodischer Funktionen

Betrachte eine periodische Funktion f(t) mit der Periode 2l.

Ansatz:
$$f(t) = \sum_{n=-\infty}^{\infty} c_n e^{in\pi t/l}$$

Ziel: Bestimmung der c_n (Fourierkoeffizienten, Amplituden der unterliegenden Frequenz ω_n)

$$\Rightarrow c_n = \frac{1}{2l} \int_{-l}^{l} dt e^{-in\pi t/l} f(t)$$
 (bei 2l-periodischen Funktionen gültig für alle t)

Alternative Formulierung in reeller Schreibweise (mit $c_n^* = c_{-n}$):

$$f(t) = a_0 + \sum_{n=1}^{\infty} [a_n \cos(n\pi t/l) + b_n \sin(n\pi t/l)]$$

$$a_0 = c_0 = \frac{1}{2l} \int_{-l}^{l} dt f(t)$$
 $a_n = \frac{1}{l} \int_{-l}^{l} dt \cos(n\pi t/l) f(t)$ $b_n = \frac{1}{l} \int_{-l}^{l} dt \sin(n\pi t/l) f(t)$

Vereinfachung durch Symmetrieüberlegungen:

$$f(t)$$
 gerade $\Rightarrow b_n = 0$ und $\int_{-l}^{l} \to 2 \int_{0}^{l}$ $f(t)$ ungerade $\Rightarrow a_n = 0$ und $\int_{-l}^{l} \to 2 \int_{0}^{l}$

Herleitung von Formeln zur Beschreibung von π aus bestimmten Fouriersummen möglich Falls f(t) unstetig bei $t=t_0$ gilt für die Fourierreihe $f_{FT}(t)=\frac{1}{2}\lim_{\epsilon\to 0}(f(t_0-\epsilon)+f(t_0+\epsilon))$

Fourierintegral

Übergang von Fourierreihe zu Fourierintegral für Grenzfall $l \to \infty$ (diskretes $\omega_n \to \text{kontin. } \omega$):

$$f(t) = \int_{-\infty}^{\infty} d\omega \, \tilde{f}(\omega) \, e^{i\omega t}$$

mit der Fouriertransformierten von f(t):

$$\tilde{f}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dt \, e^{-i\omega t} \, f(t)$$

Zu beachten:

- Formale Identität von räumlichem Variablenpaar (x,k) und zeitlichem Paar (t,ω)
- Keine Einheitlichkeit bezüglich der Vorzeichen in den e-Funktionen und der Vorfaktoren

Laplace-Transformation: $g(\lambda) = \int_0^\infty dt f(t) \exp(-\lambda t)$ (formal ähnlich)

Wichtige Eigenschaft der Fourier- und der Laplacetransformation:

$$\mathcal{F}(f(x) * g(x)) = 2\pi \mathcal{F}(f(x)) \mathcal{F}(g(x))$$

(Definition der Faltung: $f(x) * g(x) \equiv \int_{-\infty}^{\infty} d\xi f(\xi) g(x - \xi)$)

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsverteilung

Wesentliche Eigenschaften einer W'keitsverteilung p mit der Ereignismenge $\Omega = \{\omega_1,, \omega_N\}$:

• $p(\omega_i) > 0$: Wahrscheinlichkeit, dass das Ereignis ω_i vorkommt.

•
$$\sum_{i=1}^{N} p(\omega_i) = 1$$

• p ist definiert für jede Menge von Ereignissen: z.B. $p(\omega_1 \vee \omega_2) = p(\omega_1) + p(\omega_2)$

Elementare Wahrscheinlichkeitsverteilungen

• Laplace-Verteilung

Alle Elementarereignisse gleich wahrscheinlich: $p_i = 1/N$, wenn Ω aus N Elementen besteht.

• Binomialverteilung

Ein Zufallsexperiment mit zwei möglichen Ergebnissen: T (Treffer), M (Misserfolg), wobei p(T) = p und p(M) = 1 - p

Wahrscheinlichkeit für genau k Treffer bei n-maliger Durchführung des Experiments:

$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$
 (vgl. Binomischer Lehrsatz)

• Poisson-Verteilung

Binomial-Verteilung sehr kleinem p und sehr großem n (\Rightarrow Ereignis sehr unwahrscheinlich) Für diesen Grenzfall gilt (mit $\lambda = pn$ als mittlerer Anzahl von Treffern):

$$p(k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

21

Zufallsgrößen

Definition: Jedem $\omega_i \in \Omega$ wird eine reelle Zahl $x_i = X(\omega_i)$ zuordnet.

Charakterisierung der Verteilung der Zufallsgröße

Wichtige Kenngrößen einer Verteilung p(X):

• Verteilungsfunktion $F(x) = \sum_{x_i \leq x} p(x_i)$.

• Mittelwert $\mu \equiv \langle X \rangle = \sum_{i=1}^{M} p(x_i) x_i$

– Binomial
verteilung: $\mu = np$

– Poissonverteilung: $\mu = \lambda$

- Varianz $\sigma^2 = \langle (X \mu)^2 \rangle = \sum_{i=1}^M p(x_i)(x_i \mu)^2$ (gewichtetes Mittel der quadr. Abweichungen) Standardabweichung σ : direktes Maß für Breite der Wahrscheinlichkeitsverteilung
 - Binomialverteilung: $\sigma^2 = np(1-p)$
 - Poissonverteilung: $\sigma^2 = \lambda$ (entspricht Grenzfall $p \to 0$ für obigen Ausdruck)

Allgemein gilt für die Verteilung der Mittelwerte bei Vormittelung über n Zufallsgrößen: $\mu_n = \mu$ und $\sigma_n^2 = \sigma^2/n$

Kontinuierliche Wahrscheinlichkeitsverteilungen

Kennzeichen: Zufallsgröße besitzt zufällig beliebige, reelle Werte zwischen zwei Größen a und b Wichtig: $p(x_0)$ nicht bestimmbar (x_0 beliebige reelle Zahl)

 \Rightarrow Mittels sog. Wahrscheinlichkeitsdichte kann $p(c \leq X \leq d) = p([c,d])$ berechnet werden.

Eigenschaften:

$$f(x) > 0$$
 für alle $a \le x \le b$
$$\int_a^b f(x) dx = 1$$

$$p(c \le X \le d) = \int_c^d f(x) dx$$

Kenngrößen:

$$F(x) = \int_a^x f(t)dt \qquad \qquad \mu = \int_a^b x f(x)dx \qquad \qquad \sigma^2 = \int_a^b (x-\mu)^2 f(x)dx$$

Wichtige Beispiele:

- Gleichverteilung: $f(x) = 1/(b-a) \Rightarrow F(x) = (x-a)/(b-a)$
- Exponential verteilung: $f(x) = \lambda e^{-\lambda x}$; $a = 0, b = \infty$
- Gaußsche Normalverteilung: $f(x)=\frac{1}{\sqrt{2\pi}}e^{-x^2/2};~a=-\infty,b=\infty,~\mu=0,~\sigma^2=1$ Zwei Möglichkeiten, eine Wahrscheinlichkeit γ anzugeben:

 $- \gamma = p(x < c_{\gamma}) = F_{0,1}(c_{\gamma})$

$$\gamma = p(x < c_{\gamma}) = F_{0,1}(c_{\gamma})$$

$$\gamma \equiv F_{0,1}(c_{\gamma}) \quad 0.5 \quad 0.9 \quad 0.95 \quad 0.975 \quad 0.841 \quad 0.977 \quad 0.999$$

$$c_{\gamma} \text{ (Quantile)} \quad 0 \quad 1.28 \quad 1.65 \quad 1.96 \quad 1 \quad 2 \quad 3$$

• Allg. Gaußverteilung: $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$ mit Erwartungswert μ und Varianz σ^2 Wichtig zur Berechnung von γ : $Y = \frac{X-\mu}{\sigma}$ ist gaußverteilt mit $\mu = 0$ und $\sigma^2 = 1$. \Rightarrow Mit Wahrscheinlichkeit $\gamma = p(|x-\mu|/\sigma < u_{\gamma})$ gilt $x \in [\mu - \sigma u_{\gamma}, \mu + \sigma u_{\gamma}]$

Zentraler Grenzwertsatz

Ausgangspunkt: $X_1, ..., X_n$ unabh. Zufallsvariablen mit derselben Verteilungsfunktion mit μ, σ^2 .

Für große n gilt: Verteilung der Mittelwerte \bar{X}_n mit μ_n und σ_n^2 ist in guter Näherung gaußverteilt.

$$\Rightarrow$$
 Variable $\frac{\bar{X} - \mu}{\sigma_n}$ normal
verteilt

 \Rightarrow Binomial- und Poissonverteilung gehen für große n in Gaußverteilung über.

Allg. Formulierung: Messgröße, die sich aus vielen unabhängigen Effekten zusammensetzt, kann durch normalverteilte Zufallsvariable meist angemessen beschrieben werden.

Statistische Analyse von Messdaten

Ausgangspunkt: Endlicher Satz von Messdaten (Stichprobe)

Ziel der Analyse:

- 1. **Abschätzung** von Eigenschaften der unterliegenden W'keitsverteilungen (insbes. μ und σ^2)
- 2. Bestimmung der **Glaubwürdigkeit**, dass gewisse Aussagen über die unterliegende Verteilung falsch oder richtig sind

Abschätzung der unterliegenden Parameter

Ziel: Abschätzung des Mittelwertes und der Varianz der unterliegenden Verteilung zu den Messwerten $x_1, ..., x_n$

Mittelwert:
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 Varianz $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$

$$\Rightarrow$$
 Für $n \to \infty$ gilt: $\bar{x} = \mu$ und $s^2 = \sigma^2$

Bei sehr vielen Stichproben erhält man: $\langle \bar{x} \rangle = \mu$ und $\langle s^2 \rangle = \sigma^2$ (erwartungstreue Schätzer)

Konfidenzintervalle

Ziel: Aussagen über die zu erwartende Genauigkeit von μ

 \Rightarrow Bestimmung von Konfidenzintervallen $[X_{min}(\gamma), X_{max}(\gamma)]$ (bzw. der Varianz von μ)

Intuitive Erkenntnisse:

- \bullet Je größer die Zahl der Stichprobenwerte n, desto kleiner die Breite des Konfidenzintervalls.
- Je größer γ , desto größer die Breite des Konfidenzintervalls.

Wichtige Erkenntnis: $f(\mu|\bar{X}) = f(\bar{X}|\mu)$ (\Rightarrow Konzept der bedingten Wahrscheinlichkeit) $\Rightarrow \mu$ ist wahrscheinlichster Wert der Verteilung $f(\bar{X})$ und umgekehrt, Varianzen sind gleich Für $f(\bar{X})$ gilt:

- \bar{X} ist gaußverteilt (zentraler Grenzwertsatz)
- Zufallsvariable $(\bar{X} \mu)/\sigma_n$ ist normalverteilt (bei gegebenem μ und mit $\sigma_n^2 \approx s^2/n$) \Rightarrow ebenso Zufallsvariable $Y = (\mu \bar{X})/\sigma_n$ (bei gegebenem \bar{X})

 \Rightarrow Mit Wahrscheinlichkeit $\gamma=p(|Y|< u_\gamma)$ gilt: $\mu\in [\bar X-u_\gamma\sigma_n,\bar X+u_\gamma\sigma_n]$

Konfidenzintervall: $X_{max} - X_{min} = 2u_{\gamma}\sigma_n$

Hinweis: $\mu = \bar{X} \pm \Delta X$ bedeutet: $u_{\gamma} = 1$ und somit $\gamma = 0.68$.

Testen von Parametern

Gaußtest

Frage: Welche Auswirkung hat die Veränderung eines bestimmten Parameters in einem Experiment

 \Rightarrow Unterscheidung zwischen den Hypothesen H_0 : $\mu_{neu}=\mu$ und H_1 : $\mu_{neu}\neq\mu$.

Definition des Fehlers 1. Art: Entscheidung für H_1 , obwohl H_0 richtig ist

$$\Rightarrow$$
 Test der normierten Testgröße $T=\frac{(\bar{X}-\mu)}{\sigma_n}=\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma}< u_{\gamma} \Leftrightarrow$ Akzeptanz

(Wichtige Annahme: Varianz der Verteilung ist bekannt und ändert sich nach Modifizierung des Experiments nicht)